Global Coronal Modeling

京都大学 宇宙物理学教室 M2松本 琢磨

UH7scrs／Sngors Letirnify

I000

最近の研究

Global Corona

－コロナ底部～地球軌道
－Trans－alfvenic MHD flow

世界の研究グループ
－Manchester
（Michigan）
－Mikic \＆Linker
－Hayashi

典型的な計算手順

Time Asymptotic Method

与えられた境界条件で定常解を得るまで計算を行う。初期条件はほぼ任意。

STEP I

ポテンシャル磁場＋
パーカーの太陽風解
STEP 2
境界物理量（温度密度）の操作
STEP 3
CMEの伝播

STEP I

（ポテンシャル磁場＋
パーカーの太陽風解）

- 温度密度を一様とする。
- 視線方向磁場を用いる。

改善点 ベクトル磁場を使う

シミュレーション

SAIC

STEP 2 （境界物理量の操作）

－温度や密度などを徐々に観測値に近づけていく
－自転の効果を入れる
（a）Field lines and density in 1 st simulation step

（c）Field lines and givei emperature map

STEP 3 （CMEの伝播）

－CME self similar solution を伝播させる。

改善点 self consistent な解を用いる

初期 flux rope

9.4 hours

密度等値面

Coronal modeling の方向性

研究計画

- 今年度
- 3次元CIP－MOCCT コードの球座標化（一ヶ月）
- 高精度な太陽風定常解をつくる（二ヶ月）
- 現実的な境界条件の取り入れ（MDI，EIT，Solar－B）
- CMEの伝播
- 来年度以降
- 極の回避（陰陽グリッド？）
- 宇宙天気につなげる

最近の研究

－Manchester（Michigan）
－ 4.9 million grid
－Mikic \＆Linker（SAIC）
－101x75x64
－Hayashi（Stanford）
－？x？x ？

見積もり

－Cs $\sim 137 \mathrm{~km} / \mathrm{s}$
－ $\mathrm{Va} \sim 449 \mathrm{~km} / \mathrm{s}(\beta=0.1)$
－$\Delta r>R s u n / 100 \sim 7 e 3 \mathrm{~km}$
－ $\mathrm{dt} \sim \Delta r^{*} 0.4 / \mathrm{Va} \sim 6.2 \mathrm{sec}$
－Total time $\sim 5.0 \mathrm{e} 5 \times 3 \mathrm{sec}$
－Total step～3e5 step

現状

二次元MHD CIP-MOCCT コード
-テスト問題-

B．C．Low Self similar solution

太陽近傍の構造

- コロナ加熱
- 高い熱伝導
－flow＜sub alfvenic
－static atomosphere

－Large scale height
－Dense atmosphere

Total Eclipse 1970

現実的な境界条件

K．Hayashi

シミュレーション

観測（1995，India）

SAIC

シミュレーション

観測（1997，Mongolia）

SAIC

シミュレーション
観測（I998，Venezuela）

SAIC
シミュレーション

観測（I999，Turkey）

SAIC

SAIC

シミュレーション
観測（2002，Australia）

SAIC

シミュレーション
観測（2006，Libya）

SAIC

